Banner Portal
The automatic segmentation of cardiac structures can transform the way we evaluate dose limits for radiotherapy in the left breast
The image shows a drawing of a woman wearing the breast cancer awareness symbol
PDF (Portuguese)
ÁUDIO (Portuguese)
VÍDEO (Portuguese)

Keywords

Radiotherapy
Automatic segmentation
Breast Cancer

How to Cite

BORGES, Murilo Guimaraes. The automatic segmentation of cardiac structures can transform the way we evaluate dose limits for radiotherapy in the left breast. Revista Saberes Universitários, Campinas, SP, v. 4, n. 00, p. e025019, 2025. DOI: 10.20396/saberes.v4i00.20371. Disponível em: https://econtents.sbu.unicamp.br/inpec/index.php/saberes/article/view/20371. Acesso em: 16 oct. 2025.

Abstract

Introduction: Radiotherapy is essential in the treatment of breast cancer, and precision in dose assessment is crucial to minimize side effects. Traditionally, anatomical structures are manually delineated, a time-consuming process subject to variability. Automatic segmentation emerges as a promising alternative. In the radiotherapy treatment of the left breast, the RTOG 1005 protocol emphasizes the importance of cardiac delineation and the need to minimize cardiac exposure to radiation. Objective: This study aims to evaluate dose distribution in auto-segmented substructures and establish models to correlate them with the dose in the cardiac area. Methodology: We used TotalSegmentator and Limbus AI for the automatic segmentation of anatomical structures. The relationship between the volume of the cardiac area and organs at risk was evaluated using log-linear regression. Results: The mean dose distribution was significant for the left anterior descending (LAD) coronary artery, heart, and left ventricle, with greater variability in absolute volumetric assessment. We present log-linear regression models to estimate dose constraint parameters, highlighting a higher number of highly correlated comparisons for absolute dose-volume assessment. Conclusion: Dose-volume assessment protocols in patients with left breast cancer generally neglect cardiac substructures. However, automatic tools can overcome these technical difficulties. This study correlates the dose in the cardiac area with doses in specific substructures and suggests limits for planning evaluation, indicating a benefit in reporting absolute dose-volume limits for future cause-and-effect assessments.

PDF (Portuguese)
ÁUDIO (Portuguese)
VÍDEO (Portuguese)

References

´ABDOU, Yara; GUPTA, Medhavi; ASAOKA, Mariko; ATTWOOD, Kristopher; MATEUSZ, Opyrchal; GANDHI, Shipra; TAKABE, Kazuaki. Left sided breast cancer is associated with aggressive biology and worse outcomes than right sided breast cancer. Scientific Reports, [S. l.], v. 12, n. 1, p. 13377, 2022. ISSN: 2045-2322. DOI: 10.1038/s41598-022-16749-4.

ARSENAULT, Julie et al. Acute Toxicity and Quality of Life of Hypofractionated Radiation Therapy for Breast Cancer. International Journal of Radiation Oncology*Biology*Physics, [S. l.], v. 107, n. 5, p. 943–948, 2020. ISSN: 0360-3016. DOI: 10.1016/j.ijrobp.2020.03.049.

CARLSON, Lauren E. et al. Coronary Artery Disease in Young Women After Radiation Therapy for Breast Cancer. JACC: CardioOncology, [S. l.], v. 3, n. 3, p. 381–392, 2021. DOI: 10.1016/j.jaccao.2021.07.008.

CASTANEDA, Serguei A.; STRASSER, Jon. Updates in the Treatment of Breast Cancer with Radiotherapy. Surgical Oncology Clinics, [S. l.], v. 26, n. 3, p. 371–382, 2017. ISSN: 1055-3207, 1558-5042. DOI: 10.1016/j.soc.2017.01.013.

COSTEA, Madalina; ZLATE, Alexandra; DURAND, Morgane; BAUDIER, Thomas; GRÉGOIRE, Vincent; SARRUT, David; BISTON, Marie-Claude. Comparison of atlas-based and deep learning methods for organs at risk delineation on head-and-neck CT images using an automated treatment planning system. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, [S. l.], v. 177, p. 61–70, 2022. ISSN: 1879-0887. DOI: 10.1016/j.radonc.2022.10.029.

DE FELICE, Francesca; RANALLI, Tiziana; MUSIO, Daniela; LISI, Roberto; REA, Federica; CAIAZZO, Rossella; TOMBOLINI, Vincenzo. Relation between Hypofractionated Radiotherapy, Toxicity and Outcome in Early Breast Cancer. The Breast Journal, [S. l.], v. 23, n. 5, p. 563–568, 2017. ISSN: 1524-4741. DOI: 10.1111/tbj.12792.

DÍAZ-GAVELA, Ana Aurora; FIGUEIRAS-GRAILLET, Lourdes; LUIS, Ángel Montero; SALAS SEGURA, Juliana; CIÉRVIDE, Raquel; DEL CERRO PEÑALVER, Elia; COUÑAGO, Felipe; ARENAS, Meritxell; LÓPEZ-FERNÁNDEZ, Teresa. Breast Radiotherapy-Related Cardiotoxicity. When, How, Why. Risk Prevention and Control Strategies. Cancers, [S. l.], v. 13, n. 7, p. 1712, 2021. ISSN: 2072-6694. DOI: 10.3390/cancers13071712.

DUANE, Frances et al. A cardiac contouring atlas for radiotherapy. Radiotherapy and Oncology, [S. l.], v. 122, n. 3, p. 416–422, 2017. ISSN: 0167-8140, 1879-0887. DOI: 10.1016/j.radonc.2017.01.008.

FEDOROV, Andriy et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging, [S. l.], v. 30, n. 9, p. 1323–1341, 2012. ISSN: 1873-5894. DOI: 10.1016/j.mri.2012.05.001.

GIBBONS, Eddie; HOFFMANN, Matthew; WESTHUYZEN, Justin; HODGSON, Andrew; CHICK, Brendan; LAST, Andrew. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy. Journal of Medical Radiation Sciences, [S. l.], v. 70 Suppl 2, n. Suppl 2, p. 15–25, 2023. ISSN: 2051-3909. DOI: 10.1002/jmrs.618.

HABATSCH, Melanie; SCHNEIDER, Manuel; REQUARDT, Martin; DOUSSIN, Sylvain. Movement assessment of breast and organ-at-risks using free-breathing, self-gating 4D magnetic resonance imaging workflow for breast cancer radiation therapy. Physics and Imaging in Radiation Oncology, [S. l.], v. 22, p. 111–114, 2022. ISSN: 2405-6316. DOI: 10.1016/j.phro.2022.05.007.

ISAKSSON, Lars Johannes et al. Automatic Segmentation with Deep Learning in Radiotherapy. Cancers, [S. l.], v. 15, n. 17, p. 4389, 2023. ISSN: 2072-6694. DOI: 10.3390/cancers15174389.

Limbus AI - Automatic Contouring for Radiation Therapy. 2023. Disponível em: https://limbus.ai/. Acesso em: 16 dez. 2023.

MEATTINI, Icro et al. Association of Breast Cancer Irradiation With Cardiac Toxic Effects: A Narrative Review. JAMA Oncology, [S. l.], v. 7, n. 6, p. 924–932, 2021. ISSN: 2374-2437. DOI: 10.1001/jamaoncol.2020.7468.

MEATTINI, Icro et al. European Society for Radiotherapy and Oncology Advisory Committee in Radiation Oncology Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. The Lancet Oncology, [S. l.], v. 23, n. 1, p. e21–e31, 2022. ISSN: 1470-2045, 1474-5488. DOI: 10.1016/S1470-2045(21)00539-8.

MIREŞTEAN, Camil Ciprian; IANCU, Roxana Irina; IANCU, Dragoş Petru Teodor. Hypofractionated Whole-Breast Irradiation Focus on Coronary Arteries and Cardiac Toxicity—A Narrative Review. Frontiers in Oncology, [S. l.], v. 12, 2022. ISSN: 2234-943X. Disponível em: https://www.frontiersin.org/articles/10.3389/fonc.2022.862819. Acesso em: 26 dez. 2023.

PIERCE, Lori J. et al. Recent Time Trends and Predictors of Heart Dose From Breast Radiation Therapy in a Large Quality Consortium of Radiation Oncology Practices. International Journal of Radiation Oncology, Biology, Physics, [S. l.], v. 99, n. 5, p. 1154–1161, 2017. ISSN: 0360-3016. DOI: 10.1016/j.ijrobp.2017.07.022.

PIROTH, Marc D. et al. Heart toxicity from breast cancer radiotherapy. Strahlentherapie Und Onkologie, [S. l.], v. 195, n. 1, p. 1–12, 2019. ISSN: 0179-7158. DOI: 10.1007/s00066-018-1378-z.

POORTMANS, Philip M. P.; TAKANEN, Silvia; MARTA, Gustavo Nader; MEATTINI, Icro; KAIDAR-PERSON, Orit. Winter is over: The use of Artificial Intelligence to individualise radiation therapy for breast cancer. The Breast, [S. l.], v. 49, p. 194–200, 2020. ISSN: 0960-9776, 1532-3080. DOI: 10.1016/j.breast.2019.11.011.

VAN DEN BOGAARD, Veerle A. B. et al. Validation and Modification of a Prediction Model for Acute Cardiac Events in Patients With Breast Cancer Treated With Radiotherapy Based on Three-Dimensional Dose Distributions to Cardiac Substructures. Journal of Clinical Oncology, [S. l.], v. 35, n. 11, p. 1171–1178, 2017. ISSN: 0732-183X. DOI: 10.1200/JCO.2016.69.8480.

VICINI, F. A. et al. NRG RTOG 1005: A Phase III Trial of Hypo Fractionated Whole Breast Irradiation with Concurrent Boost vs. Conventional Whole Breast Irradiation Plus Sequential Boost Following Lumpectomy for High Risk Early-Stage Breast Cancer. International Journal of Radiation Oncology, Biology, Physics, [S. l.], v. 114, n. 3, p. S1, 2022. ISSN: 0360-3016. DOI: 10.1016/j.ijrobp.2022.07.2320.

WAHID, Kareem A. et al. Large scale crowdsourced radiotherapy segmentations across a variety of cancer anatomic sites. Scientific Data, [S. l.], v. 10, n. 1, p. 161, 2023. ISSN: 2052-4463. DOI: 10.1038/s41597-023-02062-w.

WANG, Shu-Lian et al. Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer: a randomised, non-inferiority, open-label, phase 3 trial. The Lancet Oncology, [S. l.], v. 20, n. 3, p. 352–360, 2019. ISSN: 1470-2045, 1474-5488. DOI: 10.1016/S1470-2045(18)30813-1.

WASSERTHAL, Jakob; MEYER, Manfred; BREIT, Hanns-Christian; CYRIAC, Joshy; YANG, Shan; SEGEROTH, Martin. TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv, arXiv:2208.05868 [cs, eess] 2022. DOI: 10.48550/arXiv.2208.05868. Disponível em: http://arxiv.org/abs/2208.05868. Acesso em: 17 mar. 2023.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Murilo Guimaraes Borges