Banner Portal
Técnicas experimentais para determinação de energias de ionização
PDF

Palavras-chave

Energia de ionização
Fotoionização
Espectroscopia de fotoelétrons
Espectroscopia de elétrons Auger
Espectroscopia de fotoelétrons de limiar (TPES)
PEPICO
TPEPICO
PEPECO
TOF-PEPECO
Radiação síncrotron

Métricas

Como Citar

1.
Araújo J de JO, Custodio R. Técnicas experimentais para determinação de energias de ionização. Rev. Chemkeys [Internet]. 23º de janeiro de 2026 [citado 23º de janeiro de 2026];8: e026001. Disponível em: https://econtents.sbu.unicamp.br/inpec/index.php/chemkeys/article/view/21074

Resumo

A determinação rigorosa de energias de ionização é fundamental para a compreensão das propriedades eletrônicas e estruturais de átomos e moléculas. O presente texto corresponde a uma revisão, comparando as principais técnicas espectroscópicas experimentais empregadas nessa determinação, destacando seus princípios, requisitos instrumentais, aplicações e limitações. Inicialmente, são discutidas as espectroscopias de fotoelétrons na região do ultravioleta (UPS) e de raios X (XPS), empregadas na obtenção de energias de ionização simples. Em seguida, apresenta-se a espectroscopia de fotoelétrons de limiar (TPES), que oferece elevada resolução e versatilidade na variação da energia de fótons. São apresentadas ainda as técnicas de coincidência PEPICO, TPEPICO, PEPECO e TOF-PEPECO, capazes de relacionar a detecção de fotoelétrons e fotoíons, permitindo a investigação detalhada de processos de fragmentação e de ionização múltipla. Essas abordagens fornecem informações complementares sobre os estados eletrônicos finais e os mecanismos de dissociação, ampliando a compreensão da dinâmica de ionização em sistemas gasosos e moleculares complexos. Conclui-se que a escolha da técnica mais adequada depende da natureza do sistema estudado, das condições experimentais disponíveis e do tipo de informação espectroscópica buscada.

PDF

Referências

1-Tentscher PR. Calculated ionization energies, orbital eigenvalues (HOMO), and related QSAR descriptors of organic molecules: a set of 61 experimental values ena-bles elimination of systematic errors and provides realis-tic error estimates. Phys. Chem. Chem. Phys., 2024, 26: 29552-29567. https://doi.org/10.1039/D4CP02342K

2-Slater JC. Quantum Theory of Atomic Structure, Vol. 1. McGraw-Hill Book Company, New York, 1960.

3. Lin L, Jacobs R, Ma T, Chen D, Booske J, Morgan D. Work Function: Fundamentals, Measurement, Calcula-tion, Engineering, and Applications. Phys. Rev. Applied, 2023, 19: 037001.

https://doi.org/10.1103/PhysRevApplied.19.037001.

4-Stanton JF, Gauss J. A simple scheme for the direct calculation of ionization potentials with coupled-cluster theory that exploits established excitation energy meth-ods. J. Chem. Phys. 1999, 111: 8785–8788.

https://doi.org/10.1063/1.479673.

5- Hollas, JM. Modern Spectroscopy. 4th ed. Chichester, 2004.

6. Suga S, Sekiyama A, Tusche C. Photoelectron Spec-troscopy. Springer International Publishing, 2021.

https://doi.org/10.1007/978-3-030-64073-6.

7-Ghosh PK. Introduction to Photoelectron Spectrosco-py. John Wiley and Sons, New York, 1983.

8-Hollenberg JL. VIII-Energy states of molecules. J. Chem. Educ.,1970, 47: 1-2. https://doi.org/10.1021/ed047p2

9- Ellis A, Feher M, Wright T. Electronic and Photoelec-tron Spectroscopy: Fundamentals and Case Studies. Cam-bridge University Press, New York, 2005.

10- Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin-Elmer Corp., Eden Prairie, 1992.

11-Stevie FA, Donley CL. Introduction to x-ray photoe-lectron spectroscopy. J. Vac. Sci. Technol. A 2020, 38: 063204.

https://doi.org/10.1116/6.0000412

12-Hüfner S. Photoelectron Spectroscopy Principles and Aplications. 3rd ed., Springer, Berlim, 2003.

13-Berntsen MH, Götberg O, Tjernberg O. An experi-mental setup for high resolution 10.5 eV laser-based an-gle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer. Rev. Sci. Instrum. 2011, 82: 095113.

https://doi.org/10.1063/1.3637464

14-Harper OJ, Chen NL, Boyé-Péronne S, Gans B. Pulsed-ramped-field-ionization zero-kinetic-energy pho-toelectron spectroscopy: a methodological advance Phys. Chem. Chem. Phys., 2022, 24: 2777-2784.

https://doi.org/10.1039/D1CP04569E

15-Auger P. Sur l’effet photoélectrique composé. J. Phys. Radium. 1925, 6: 205–208.

https://doi.org/10.1051/jphysrad:0192500606020500.

16-Narumand DH, Childs KD. Auger Spectrometers: A Tutorial Review. Appl. Spectrosc. Rev. 2004, 34:139–158.

https://doi.org/10.1081/ASR-100100842.

17-Rye RR, Houston JE. Molecular Auger spectroscopy. Acc. Chem Res 1984,17: 41–47.

https://doi.org/10.1021/ar00097a007.

18- Jayadev NK, Ferino-Pérez A, Matz F, Krylov AI, Jagau T-C. The Auger spectrum of benzene. J. Chem. Phys. 2023, 158: 064109. https://doi.org/10.1063/5.0138674.

19-Moddeman WE, Carlson TA, Krause MO, Pullen BP, Bull WE, Schweitzer GK. Determination of the K—LL Auger Spectra of N2, O2, CO, NO, H2O, and CO2. J. Chem. Phys. 1971, 55: 2317-2336.

https://doi.org/10.1063/1.1676411.

20-Baer T, Tuckett RP. Advances in threshold photoelec-tron spectroscopy (TPES) and threshold photoelec-tron photoion coincidence (TPEPICO). Phys. Chem. Chem. Phys., 2017, 19: 9698–9723.

https://doi.org/10.1039/C7CP00144D.

21-Villarejo D, Herm RR, Inghram MG. Measurement of Threshold Electrons in the Photoionization of Ar, Kr, and Xe. J. Chem. Phys., 1967, 46: 4995–4996.

https://doi.org/10.1063/1.1840677.

22-Villarejo D. Measurement of Threshold Electrons in the Photoionization of H2 and D2*. J. Chem. Phys., 1968, 48: 4014–4026. https://doi.org/10.1063/1.1669729.

23-Baer T, Bodi A, Sztáray B. Photoelectron–Photoion Coincidence Methods in Mass Spectrometry, (PEPICO). Encyclopedia of Spectroscopy and Spectrome-try, Elsevier; 2017, p. 635–649.

https://doi.org/10.1016/B978-0-12-409547-2.11311-3.

24-Eland JHD. Photoelectron-photoion coincidence spec-troscopy. Int J Mass Spectrom. Ion Phys. 1972, 8: 143–151. https://doi.org/10.1016/0020-7381(72)80004-4.

25-Arion T, Hergenhahn U. Coincidence spectroscopy: Past, present and perspectives. J. Electron Spectrosc. Relat. Phenom., 2015, 200: 222-231.

https://doi.org/10.1016/j.elspec.2015.06.004.

26-Wiley WC, McLaren IH. Time-of-Flight Mass Spec-trometer with Improved Resolution. Rev. Sci. Instrum., 1955, 26: 1150–1157.

https://doi.org/10.1063/1.1715212.

27-Fischer I, Pratt ST. Photoelectron spectroscopy in molecular physical chemistry. Phys. Chem. Chem. Phys., 2022, 24: 1944–1959.

https://doi.org/10.1039/D1CP04984D

28-Danby CJ, Eland JHD. Photoelectron-photoion coin-cidence spectroscopy: II. Design and performance of a practical instrument. Int. J. Mass Spectrom. Ion Phys.,1972, 8: 153–161.

https://doi.org/10.1016/0020-7381(72)80005-6.

29-Jarvis GK, Weitzel K-M, Malow M, Baer T, Song Y, Ng CY. High-resolution pulsed field ionization photoelec-tron-photoion coincidence spectroscopy using synchro-tron radiation. Rev. Sci. Instrum. 1999, 70: 3892–3906.

https://doi.org/10.1063/1.1150009.

30-Price SD, Eland JHD. An electron spectrometer to record gas phase photoelectron-photoelectron coinci-dence spectra following double photoionization. Meas Sci Technol 1992, 3: 306–315.

https://doi.org/10.1088/0957-0233/3/3/010.

31-Miron C, Morin P. High‐resolution Inner‐shell Pho-toionization, Photoelectron and Coincidence Spectros-copy. Handbook of High‐resolution Spectroscopy, Wiley, 2011.

https://doi.org/10.1002/9780470749593.hrs066.

32- Turri G, Bolognesi P, Sugimoto H, Mathis J, Avaldi L. Photodouble ionization of water studied by photoelec-tron–photoelectron coincidence experiments, J. Phys. B: At. Mol. Opt. Phys. 2019, 52: 07LT01.

https://doi.org/10.1088/1361-6455/ab0904.

33-Dawber G, McConkey AG, Rojas H, Gulley N, King GC, Avaldi L, et al. Photodouble ionization of atoms and molecules near threshold, Can. J. Phys. 1996, 74: 782–788.

https://doi.org/10.1139/p96-112.

34-S Cvejanovic, F H Read. Studies of the threshold elec-tron impact ionization of helium, J. Phys. B: At. Mol. Phys. 1974, 7: 1841–52.

https://doi.org/10.1088/0022-3700/7/14/008

35-Thompson DB, Dawber G, Gulley N, MacDonald MA, King GC. Observation of photo-double ionization of carbon monoxide below the adiabatic double-ionization potential bythreshold - photoelectron-photoelectron coincidence spectroscopy. J. Phys. B: At. Mol. Opt. Phys., 1997, 30: L147

https://doi.org/10.1088/0953-4075/30/5/004.

36-Eland JHD, Ho SSW, Worthington HL. Complete dou-ble photoionisation spectrum of NO. Chem. Phys., 2003, 290: 27–34.

https://doi.org/10.1016/S0301-0104(03)00092-2

37. Eland JHD. Complete double photoionisation spectra of small molecules via TOF-PEPECO measurement, Chem. Phys. 2003, 294: 171–186.

doi:10.1016/j.chemphys.2003.08.001.

38-Eland JHD, Wort FS, Lablanquie P, Nenner I. Mass spectrometric and coincidence studies of double pho-toionization of small molecules. Z. Phys. D: At. Mol. Clus-ters.1986;4:31–42.

doi: https://doi.org/10.1007/BF01432496.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2026 Josué de Jesus Oliveira Araújo, Rogério Custodio

Downloads

Download data is not yet available.