Banner Portal
Técnicas experimentales para determinar las energías de ionización
PDF (Portugués)

Palabras clave

Energía de ionización
Fotoionización
Espectroscopia de fotoelectrones
Espectroscopia de electrones Auger
Espectroscopia de fotoelectrones de umbral (TPES)
PEPICO
TPEPICO
PEPECO
TOF-PEPECO
Radiación sincrotrón

Métricas

Cómo citar

1.
Araújo J de JO, Custodio R. Técnicas experimentales para determinar las energías de ionización. Rev. Chemkeys [Internet]. 2026 Jan. 23 [cited 2026 Feb. 2];8: e026001. Available from: https://econtents.sbu.unicamp.br/inpec/index.php/chemkeys/article/view/21074

Resumen

La determinación rigurosa de las energías de ionización es fundamental para la comprensión de las propiedades electrónicas y estructurales de átomos y moléculas. El presente texto corresponde a una revisión que compara las principales técnicas espectroscópicas experimentales empleadas en dicha determinación, destacando sus principios, requisitos instrumentales, aplicaciones y limitaciones. Inicialmente, se discuten las espectroscopias de fotoelectrones en la región del ultravioleta (UPS) y de rayos X (XPS), utilizadas en la obtención de energías de ionización simples. A continuación, se presenta la espectroscopia de fotoelectrones de umbral (TPES), que ofrece alta resolución y gran versatilidad en la variación de la energía de los fotones. También se describen las técnicas de coincidencia PEPICO, TPEPICO, PEPECO y TOF-PEPECO, capaces de correlacionar la detección de fotoelectrones y fotoiones, lo que permite la investigación detallada de los procesos de fragmentación y de ionización múltiple. Estos enfoques proporcionan información complementaria sobre los estados electrónicos finales y los mecanismos de disociación, ampliando la comprensión de la dinámica de ionización en sistemas gaseosos y moleculares complejos. Se concluye que la elección de la técnica más adecuada depende de la naturaleza del sistema estudiado, de las condiciones experimentales disponibles y del tipo de información espectroscópica que se busca.

PDF (Portugués)

Referencias

1-Tentscher PR. Calculated ionization energies, orbital eigenvalues (HOMO), and related QSAR descriptors of organic molecules: a set of 61 experimental values ena-bles elimination of systematic errors and provides realis-tic error estimates. Phys. Chem. Chem. Phys., 2024, 26: 29552-29567.

https://doi.org/10.1039/D4CP02342K

2-Slater JC. Quantum Theory of Atomic Structure, Vol. 1. McGraw-Hill Book Company, New York, 1960.

3. Lin L, Jacobs R, Ma T, Chen D, Booske J, Morgan D. Work Function: Fundamentals, Measurement, Calcula-tion, Engineering, and Applications. Phys. Rev. Applied, 2023, 19: 037001.

https://doi.org/10.1103/PhysRevApplied.19.037001.

4-Stanton JF, Gauss J. A simple scheme for the direct calculation of ionization potentials with coupled-cluster theory that exploits established excitation energy meth-ods. J. Chem. Phys. 1999, 111: 8785–8788.

https://doi.org/10.1063/1.479673.

5- Hollas, JM. Modern Spectroscopy. 4th ed. Chichester, 2004.

6. Suga S, Sekiyama A, Tusche C. Photoelectron Spec-troscopy. Springer International Publishing, 2021.

https://doi.org/10.1007/978-3-030-64073-6.

7-Ghosh PK. Introduction to Photoelectron Spectrosco-py. John Wiley and Sons, New York, 1983.

8-Hollenberg JL. VIII-Energy states of molecules. J. Chem. Educ.,1970, 47: 1-2. https://doi.org/10.1021/ed047p2

9- Ellis A, Feher M, Wright T. Electronic and Photoelec-tron Spectroscopy: Fundamentals and Case Studies. Cam-bridge University Press, New York, 2005.

10- Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin-Elmer Corp., Eden Prairie, 1992.

11-Stevie FA, Donley CL. Introduction to x-ray photoe-lectron spectroscopy. J. Vac. Sci. Technol. A 2020, 38: 063204.

https://doi.org/10.1116/6.0000412

12-Hüfner S. Photoelectron Spectroscopy Principles and Aplications. 3rd ed., Springer, Berlim, 2003.

13-Berntsen MH, Götberg O, Tjernberg O. An experi-mental setup for high resolution 10.5 eV laser-based an-gle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer. Rev. Sci. Instrum. 2011, 82: 095113.

https://doi.org/10.1063/1.3637464

14-Harper OJ, Chen NL, Boyé-Péronne S, Gans B. Pulsed-ramped-field-ionization zero-kinetic-energy pho-toelectron spectroscopy: a methodological advance Phys. Chem. Chem. Phys., 2022, 24: 2777-2784.

https://doi.org/10.1039/D1CP04569E

15-Auger P. Sur l’effet photoélectrique composé. J. Phys. Radium. 1925, 6: 205–208.

https://doi.org/10.1051/jphysrad:0192500606020500.

16-Narumand DH, Childs KD. Auger Spectrometers: A Tutorial Review. Appl. Spectrosc. Rev. 2004, 34:139–158.

https://doi.org/10.1081/ASR-100100842.

17-Rye RR, Houston JE. Molecular Auger spectroscopy. Acc. Chem Res 1984,17: 41–47.

https://doi.org/10.1021/ar00097a007.

18- Jayadev NK, Ferino-Pérez A, Matz F, Krylov AI, Jagau T-C. The Auger spectrum of benzene. J. Chem. Phys. 2023, 158: 064109. https://doi.org/10.1063/5.0138674.

19-Moddeman WE, Carlson TA, Krause MO, Pullen BP, Bull WE, Schweitzer GK. Determination of the K—LL Auger Spectra of N2, O2, CO, NO, H2O, and CO2. J. Chem. Phys. 1971, 55: 2317-2336.

https://doi.org/10.1063/1.1676411.

20-Baer T, Tuckett RP. Advances in threshold photoelec-tron spectroscopy (TPES) and threshold photoelec-tron photoion coincidence (TPEPICO). Phys. Chem. Chem. Phys., 2017, 19: 9698–9723.

https://doi.org/10.1039/C7CP00144D.

21-Villarejo D, Herm RR, Inghram MG. Measurement of Threshold Electrons in the Photoionization of Ar, Kr, and Xe. J. Chem. Phys., 1967, 46: 4995–4996.

https://doi.org/10.1063/1.1840677.

22-Villarejo D. Measurement of Threshold Electrons in the Photoionization of H2 and D2*. J. Chem. Phys., 1968, 48: 4014–4026.

https://doi.org/10.1063/1.1669729.

23-Baer T, Bodi A, Sztáray B. Photoelectron–Photoion Coincidence Methods in Mass Spectrometry, (PEPICO). Encyclopedia of Spectroscopy and Spectrome-try, Elsevier; 2017, p. 635–649.

https://doi.org/10.1016/B978-0-12-409547-2.11311-3.

24-Eland JHD. Photoelectron-photoion coincidence spec-troscopy. Int J Mass Spectrom. Ion Phys. 1972, 8: 143–151.

https://doi.org/10.1016/0020-7381(72)80004-4.

25-Arion T, Hergenhahn U. Coincidence spectroscopy: Past, present and perspectives. J. Electron Spectrosc. Relat. Phenom., 2015, 200: 222-231.

https://doi.org/10.1016/j.elspec.2015.06.004.

26-Wiley WC, McLaren IH. Time-of-Flight Mass Spec-trometer with Improved Resolution. Rev. Sci. Instrum., 1955, 26: 1150–1157.

https://doi.org/10.1063/1.1715212.

27-Fischer I, Pratt ST. Photoelectron spectroscopy in molecular physical chemistry. Phys. Chem. Chem. Phys., 2022, 24: 1944–1959.

https://doi.org/10.1039/D1CP04984D

28-Danby CJ, Eland JHD. Photoelectron-photoion coin-cidence spectroscopy: II. Design and performance of a practical instrument. Int. J. Mass Spectrom. Ion Phys.,1972, 8: 153–161.

https://doi.org/10.1016/0020-7381(72)80005-6.

29-Jarvis GK, Weitzel K-M, Malow M, Baer T, Song Y, Ng CY. High-resolution pulsed field ionization photoelec-tron-photoion coincidence spectroscopy using synchro-tron radiation. Rev. Sci. Instrum. 1999, 70: 3892–3906.

https://doi.org/10.1063/1.1150009.

30-Price SD, Eland JHD. An electron spectrometer to record gas phase photoelectron-photoelectron coinci-dence spectra following double photoionization. Meas Sci Technol 1992, 3: 306–315.

https://doi.org/10.1088/0957-0233/3/3/010.

31-Miron C, Morin P. High‐resolution Inner‐shell Pho-toionization, Photoelectron and Coincidence Spectros-copy. Handbook of High‐resolution Spectroscopy, Wiley, 2011.

https://doi.org/10.1002/9780470749593.hrs066.

32- Turri G, Bolognesi P, Sugimoto H, Mathis J, Avaldi L. Photodouble ionization of water studied by photoelec-tron–photoelectron coincidence experiments, J. Phys. B: At. Mol. Opt. Phys. 2019, 52: 07LT01.

https://doi.org/10.1088/1361-6455/ab0904.

33-Dawber G, McConkey AG, Rojas H, Gulley N, King GC, Avaldi L, et al. Photodouble ionization of atoms and molecules near threshold, Can. J. Phys. 1996, 74: 782–788.

https://doi.org/10.1139/p96-112.

34-S Cvejanovic, F H Read. Studies of the threshold elec-tron impact ionization of helium, J. Phys. B: At. Mol. Phys. 1974, 7: 1841–52.

https://doi.org/10.1088/0022-3700/7/14/008

35-Thompson DB, Dawber G, Gulley N, MacDonald MA, King GC. Observation of photo-double ionization of carbon monoxide below the adiabatic double-ionization potential bythreshold - photoelectron-photoelectron coincidence spectroscopy. J. Phys. B: At. Mol. Opt. Phys., 1997, 30: L147

https://doi.org/10.1088/0953-4075/30/5/004.

36-Eland JHD, Ho SSW, Worthington HL. Complete dou-ble photoionisation spectrum of NO. Chem. Phys., 2003, 290: 27–34.

https://doi.org/10.1016/S0301-0104(03)00092-2

37. Eland JHD. Complete double photoionisation spectra of small molecules via TOF-PEPECO measurement, Chem. Phys. 2003, 294: 171–186.

https://doi.org/10.1016/j.chemphys.2003.08.001.

38-Eland JHD, Wort FS, Lablanquie P, Nenner I. Mass spectrometric and coincidence studies of double pho-toionization of small molecules. Z. Phys. D: At. Mol. Clus-ters.1986;4:31–42.

https://doi.org/10.1007/BF01432496.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2026 Josué de Jesus Oliveira Araújo, Rogério Custodio

Downloads

Download data is not yet available.